Last updated: 2020-05-12

Checks: 7 0

Knit directory: drift-workflow/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190211) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 791b186. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .snakemake/
    Ignored:    data/datasets/
    Ignored:    data/raw/
    Ignored:    data/simulations/
    Ignored:    nb-log-1208793.err
    Ignored:    nb-log-1208793.out
    Ignored:    notebooks/.ipynb_checkpoints/
    Ignored:    output/
    Ignored:    sandbox/.ipynb_checkpoints/

Unstaged changes:
    Modified:   analysis/hoa_global_greedy_bimodal.Rmd
    Modified:   cluster.json
    Modified:   snakefiles/coalsim/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/hoa_global_drift_bimodal.Rmd) and HTML (docs/hoa_global_drift_bimodal.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 791b186 Joseph Marcus 2020-05-12 wflow_publish(“hoa_global_drift_bimodal.Rmd”)
html 8cd7474 Joseph Marcus 2020-05-09 Build site.
Rmd a696d62 Joseph Marcus 2020-05-09 wflow_publish(“hoa_global_drift_bimodal.Rmd”)
html dfe02ad Joseph Marcus 2020-05-09 Build site.
Rmd e3c2fae Joseph Marcus 2020-05-09 wflow_publish(“hoa_global_drift_bimodal.Rmd”)
Rmd d4d2bf3 Joseph Marcus 2020-05-02 fixed up plotting and added weur to pipeline
Rmd d075c79 Joseph Marcus 2020-04-30 starting drift analysis on hoa global data

This is an analysis of applying drift of the full Human Origins dataset which includes 2068 sampled from around the world. I filtered out rare variants with global minor allele frequency less than 5%, removed any variants with a missingness fraction greater than 0.5%, and removed any SNPs on the sex chromosomes, resulting in 343758 SNPs … see Human Origins Array Global Data for details on the data pre-processing.

Imports

Lets import some needed packages:

library(ggplot2)
library(tidyr)
library(dplyr)
library(RColorBrewer)
library(knitr)
library(cowplot)
source("../code/structure_plot.R")

Functions

Here some helper functions specific to this analysis:

get_pops <- function(meta_df, region){
  pops <- meta_df %>% 
          filter(Region==region) %>% 
          dplyr::select(Region, Simple.Population.ID, Latitude) %>%
          distinct(Simple.Population.ID, Latitude) %>% 
          arrange(desc(Latitude)) %>% 
          pull(Simple.Population.ID)
    return(pops)
}

create_regional_structure_plot <- function(l_df, 
                                           K, 
                                           region,
                                           colors, 
                                           ymax,
                                           label_font_size=4,
                                           gap=1,
                                           yaxis_tick_font_size=6,
                                           yaxis_title_font_size=6){
  l_pop_df <- l_df %>% 
              filter(Region==region)
  pops <- get_pops(meta_df, region)
  labels <- as.vector(droplevels(l_pop_df$Simple.Population.ID))
  label_order <- as.vector(droplevels(pops))
  p <- create_structure_plot(l_pop_df[,1:(K-1)], 
                             labels=labels, 
                             colors=colors,
                             gap=gap,
                             ymax=ymax,
                             label_order=label_order,
                             label_font_size=label_font_size,
                             yaxis_tick_font_size=yaxis_title_font_size,
                             yaxis_title_font_size=yaxis_title_font_size)
  return(p)
}

prepare_data <- function(rds_prefix, fam_path, K, meta_df, scale_loadings){
  # read rds
  rds_path <- paste0(rds_prefix, K, ".rds")
  fl <- readRDS(rds_path)
  
  # scale the loadings by the prior variances
  if(scale_loadings){
    EL <- fl$EL %*% diag(sqrt(fl$prior_s2))
  } else {
    EL <- fl$EL 
  }

  # read the meta data
  l_df <- as.data.frame(EL)
  colnames(l_df) <- paste0(1:K)
  inds <- read.table(fam_path, header=F, stringsAsFactors=F) %>% pull(V2)
  l_df$ID <- inds
  l_df <- l_df %>% inner_join(meta_df, by="ID")
  return(l_df)
}

Data

File paths

Here are the needed file paths to the fit and meta data:

rds_prefix <- "../output/drift/hoa_global/HumanOriginsPublic2068_auto_maf05_geno005_mind02_K"
fam_path <- "../data/datasets/hoa_global/HumanOriginsPublic2068_auto_maf05_geno005_mind02.fam"
meta_path <- "../data/meta/HumanOriginsPublic2068.meta"

Meta data

Read the meta data for each individual:

meta_df <- read.table(meta_path, sep="\t", header=T)
head(meta_df)
      ID Simple.Population.ID Verbose.Population.ID Region      Country
1 SA1004              Khomani               Khomani Africa South_Africa
2  SA063              Khomani               Khomani Africa South_Africa
3  SA010              Khomani               Khomani Africa South_Africa
4  SA064              Khomani               Khomani Africa South_Africa
5  SA073              Khomani               Khomani Africa South_Africa
6 SA1025              Khomani               Khomani Africa South_Africa
  Latitude Longitude Samples Passed.QC  Contributor
1    -27.8      21.1      12        11 Brenna Henna
2    -27.8      21.1      12        11 Brenna Henna
3    -27.8      21.1      12        11 Brenna Henna
4    -27.8      21.1      12        11 Brenna Henna
5    -27.8      21.1      12        11 Brenna Henna
6    -27.8      21.1      12        11 Brenna Henna

drift fits

Here I create STRUCTURE plots for each value of \(K\). Also note I just ran each of these for a fixed number of iterations and light convergence tolerance threshold (i.e. different from the ELBO). It is not guaranteed any of these have converged to a local optima:

Kmax <- 12
for(k in 3:Kmax){
  for(scale_loadings in c(FALSE, TRUE)){
    # prep the loadings + join with meta data
    colors <- brewer.pal(n=k, name="Set3")
    l_df <- prepare_data(rds_prefix=rds_prefix, 
                         fam_path=fam_path, 
                         K=k, 
                         meta_df=meta_df, 
                         scale_loadings=scale_loadings)
    # remove first factor
    l_df <- l_df[,-1]
    
    # max loading value accross factors
    ymax <- max(rowSums(l_df[,1:(k-1)]))
    
    # structure plots
    p_afr <- create_regional_structure_plot(l_df, k, "Africa", colors, ymax, label_font_size=5)
    p_weur <- create_regional_structure_plot(l_df, k, "WestEurasia", colors, ymax, label_font_size=3.5, gap=4)
    p_sib <- create_regional_structure_plot(l_df, k, "CentralAsiaSiberia", colors, ymax, label_font_size=6)
    p_amr <- create_regional_structure_plot(l_df, k, "America", colors, ymax, label_font_size=6)
    p_eas <-create_regional_structure_plot(l_df, k, "EastAsia", colors, ymax, label_font_size=6)
    p_sas <- create_regional_structure_plot(l_df, k, "SouthAsia", colors, ymax, label_font_size=6)
    p_oc <- create_regional_structure_plot(l_df, k, "Oceania", colors, ymax, label_font_size=6, gap=.1)
    p <- cowplot::plot_grid(p_afr, p_weur, p_sib, p_amr, p_eas, p_sas, p_oc, nrow=7, align="v") 
  
    # print text and plot
    print(paste0("K=", k, " | scale_loadings=", scale_loadings))
    print(p)
  }
}
[1] "K=3 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=3 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=4 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=4 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=5 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=5 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=6 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=6 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=7 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=7 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=8 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=8 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=9 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=9 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=10 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=10 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=11 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=11 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=12 | scale_loadings=FALSE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09
[1] "K=12 | scale_loadings=TRUE"

Version Author Date
dfe02ad Joseph Marcus 2020-05-09

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_0.9.4      knitr_1.20         RColorBrewer_1.1-2
[4] dplyr_0.8.5        tidyr_1.0.2        ggplot2_3.3.0     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6      drift.alpha_0.0.9 plyr_1.8.4       
 [4] compiler_3.5.1    pillar_1.4.3      later_0.7.5      
 [7] git2r_0.26.1      workflowr_1.6.1   tools_3.5.1      
[10] digest_0.6.25     lattice_0.20-38   evaluate_0.14    
[13] lifecycle_0.2.0   tibble_3.0.1      gtable_0.3.0     
[16] pkgconfig_2.0.3   rlang_0.4.5       Matrix_1.2-15    
[19] parallel_3.5.1    yaml_2.2.0        ebnm_0.1-24      
[22] invgamma_1.1      flashier_0.2.4    withr_2.2.0      
[25] stringr_1.4.0     fs_1.3.1          vctrs_0.2.4      
[28] rprojroot_1.3-2   grid_3.5.1        tidyselect_1.0.0 
[31] glue_1.4.0        R6_2.4.1          rmarkdown_1.10   
[34] mixsqp_0.3-17     irlba_2.3.3       farver_2.0.3     
[37] reshape2_1.4.3    ashr_2.2-50       purrr_0.3.4      
[40] magrittr_1.5      whisker_0.3-2     backports_1.1.6  
[43] scales_1.1.0      promises_1.0.1    htmltools_0.3.6  
[46] ellipsis_0.3.0    assertthat_0.2.1  colorspace_1.4-1 
[49] httpuv_1.4.5      labeling_0.3      stringi_1.4.6    
[52] munsell_0.5.0     truncnorm_1.0-8   SQUAREM_2020.2   
[55] crayon_1.3.4