Last updated: 2019-12-21

Checks: 7 0

Knit directory: drift-workflow/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190211) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/flash_cache/
    Ignored:    data.tar.gz
    Ignored:    data/datasets/
    Ignored:    data/raw/
    Ignored:    docs/figure/.DS_Store
    Ignored:    docs/figure/hoa_global.Rmd/.DS_Store
    Ignored:    output.tar.gz
    Ignored:    output/

Untracked files:
    Untracked:  analysis/arabidopsis-eda.Rmd
    Untracked:  data/HGDP_PopStruct_Exercise/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd d4d03c5 jhmarcus 2019-12-21 wflow_publish(“simple_2pop_tree_simulation_bimodal.Rmd”)
Rmd 8b7a8bc jhmarcus 2019-12-20 updated 2 pop sim to have longer maxiter
html 8b7a8bc jhmarcus 2019-12-20 updated 2 pop sim to have longer maxiter
Rmd 7b7b6d4 jhmarcus 2019-12-19 added init drift alpha application to simulation
html 7b7b6d4 jhmarcus 2019-12-19 added init drift alpha application to simulation
Rmd e3936bc jhmarcus 2019-12-01 pushing 2 pop analysis
html e3936bc jhmarcus 2019-12-01 pushing 2 pop analysis

Here we simulate Gaussian data under a simple 2 population tree i.e. a split and explore the interpretability of flashier and drift fits to the data. The data generated under this tree can be represented as a probabilistic matrix factorization model with 1 shared factor and 2 population specific factors … this is what we’d like to recover.

Import

Import the required packages and load helper scripts for this analysis:

library(ggplot2)
library(dplyr)
library(tidyr)
library(flashier)
library(drift.alpha)

source("../code/ebnm_functions.R")

Simulate

Here I simulate the data generated from a simple 2 population tree. I set the residual std. dev. to 1 and prior variances to 1. There are 50 individuals per population and 10000 simulated SNPs:

##### sim ##### 
set.seed(235)
n_per_pop <- 50
pops <- c(rep("Pop1", n_per_pop), rep("Pop2", n_per_pop))
sigma_e <- 1.0
sigma_b <- c(1.0, 1.0, 1.0)
p = 10000
sim_res <- drift.alpha::two_pop_tree_sim(n_per_pop, p, sigma_e, sigma_b)
K <- 3
Y <- sim_res$Y
n <- nrow(Y)
p <- ncol(Y)

##### viz ##### 
drift.alpha::plot_loadings(sim_res$L, pops)

Version Author Date
7b7b6d4 jhmarcus 2019-12-19

Greedy

Run the greedy algorithm which seems to recover the tree:

##### fit ##### 
flash_greedy_res <- flash.init(Y, var.type=0) %>%
                    flash.add.greedy(Kmax=K,
                                     prior.family=c(drift.alpha::prior.bimodal(grid_size = 40), 
                                                    prior.normal()))
Adding factor 1 to flash object...
Adding factor 2 to flash object...
Adding factor 3 to flash object...
Wrapping up...
Done.
##### viz ##### 
pm <- flash_greedy_res$loadings.pm[[1]] 
plot_loadings(pm, pops)

Version Author Date
7b7b6d4 jhmarcus 2019-12-19
e3936bc jhmarcus 2019-12-01

Initialize from greedy

Initialize the backfitting algorithm with the greedy solution which recovers a sparser representation of the tree i.e. it zeros out the shared factor:

##### fit ##### 
flash_backfit_res <- flash_greedy_res %>% flash.backfit()
Backfitting 3 factors (tolerance: 1.49e-02)...
  Difference between iterations is within 1.0e+02...
  Difference between iterations is within 1.0e+01...
  Difference between iterations is within 1.0e+00...
  Difference between iterations is within 1.0e-01...
  Difference between iterations is within 1.0e-02...
Wrapping up...
Done.
##### viz ##### 
pm <- flash_backfit_res$loadings.pm[[1]] 
elbo_gr_bf <- flash_backfit_res$elbo
plot_loadings(flash_backfit_res$loadings.pm[[1]], pops)

Version Author Date
7b7b6d4 jhmarcus 2019-12-19
e3936bc jhmarcus 2019-12-01

Initialize from truth and fix the priors

Initialize from the truth and fix the prior which as expected recovers the tree representation we want:

##### fit ##### 
flash_fix_res <- flash.init(Y, var.type=0) %>%
                 flash.init.factors(EF=list(u=sim_res$L, d=rep(1, K), v=sim_res$F), 
                                    prior.family=list(c(prior.fixtwopm(pi = c(0.0, 1.0)), 
                                                        prior.fixnormal()), 
                                                      c(prior.fixtwopm(pi = c(.5, .5)), 
                                                        prior.fixnormal()),
                                                      c(prior.fixtwopm(pi = c(.5, .5)), 
                                                        prior.fixnormal()))) %>%
                 flash.backfit()
Backfitting 3 factors (tolerance: 1.49e-02)...
  Difference between iterations is within 1.0e+02...
  Difference between iterations is within 1.0e+01...
Wrapping up...
Done.
##### viz ##### 
pm <- flash_fix_res$loadings.pm[[1]] 
elbo_init_true <- flash_fix_res$elbo
plot_loadings(flash_fix_res$loadings.pm[[1]], pops)

Version Author Date
7b7b6d4 jhmarcus 2019-12-19
e3936bc jhmarcus 2019-12-01

Compare the final elbos between the solution where we initialize from the truth and fix the prior to the solution where we initialize from the greedy fit and don’t fix the prior:

print(elbo_init_true)
[1] -1482301
print(elbo_gr_bf)
[1] -1465622
print(elbo_init_true>elbo_gr_bf)
[1] FALSE

The solution where we initialize with greedy fit has a higher ELBO then when we initialize from the truth and fix the prior.

drift

Lets now try our new drift algorithm which uses the same bimodal mixture prior for the loadings and Gaussian prior for the factors but a new variational approximation for the factors which accounts for correlations in the posterior i.e. full mvn for the variational approximation:

init <- drift.alpha:::init_from_flash(flash_greedy_res)
drift_res <- drift.alpha:::drift(init)
   1 :    -1465398.387 
   2 :    -1464851.616 
   3 :    -1464736.843 
   4 :    -1464704.063 
   5 :    -1464692.839 
   6 :    -1464688.561 
   7 :    -1464686.825 
   8 :    -1464686.094 
   9 :    -1464685.780 
  10 :    -1464685.642 
  11 :    -1464685.582 
  12 :    -1464685.555 
  13 :    -1464685.543 
  14 :    -1464685.537 
plot_loadings(drift_res$EL, pops)

Version Author Date
7b7b6d4 jhmarcus 2019-12-19

Very exciting! It seems to maintain the tree structure that the greedy solution finds.

print(drift_res$prior_s2)
[1] 1.0185987 0.9678496 1.0085159
print(drift_res$resid_s2)
[1] 1.001795

drift recovers the correct prior and residual variances.

drift_res$CovF
           [,1]       [,2]       [,3]
[1,]  0.3371207 -0.3302804 -0.3305514
[2,] -0.3302804  0.3432082  0.3238444
[3,] -0.3305514  0.3238444  0.3437556
cov2cor(drift_res$CovF)
           [,1]       [,2]       [,3]
[1,]  1.0000000 -0.9709821 -0.9710049
[2,] -0.9709821  1.0000000  0.9428283
[3,] -0.9710049  0.9428283  1.0000000

We can see drift is estimating very strong correlations in the posterior. Lets try initializing from the flash backfit solution:

init <- drift.alpha:::init_from_flash(flash_backfit_res)
drift_res <- drift.alpha:::drift(init, maxiter = 1000)
   1 :    -1465184.207 
   2 :    -1465104.297 
   3 :    -1465098.698 
   4 :    -1465094.188 
   5 :    -1465090.174 
   6 :    -1465083.404 
   7 :    -1465076.797 
   8 :    -1465070.348 
   9 :    -1465064.063 
  10 :    -1465057.963 
  11 :    -1465052.095 
  12 :    -1465046.547 
  13 :    -1465041.447 
  14 :    -1465036.954 
  15 :    -1465033.212 
  16 :    -1465030.290 
  17 :    -1465026.778 
  18 :    -1465021.477 
  19 :    -1465016.299 
  20 :    -1465011.244 
  21 :    -1465006.319 
  22 :    -1465001.538 
  23 :    -1464996.929 
  24 :    -1464992.535 
  25 :    -1464988.423 
  26 :    -1464984.677 
  27 :    -1464981.389 
  28 :    -1464978.638 
  29 :    -1464976.461 
  30 :    -1464974.634 
  31 :    -1464970.995 
  32 :    -1464967.332 
  33 :    -1464963.789 
  34 :    -1464960.362 
  35 :    -1464957.048 
  36 :    -1464953.850 
  37 :    -1464950.773 
  38 :    -1464947.831 
  39 :    -1464945.047 
  40 :    -1464942.455 
  41 :    -1464940.096 
  42 :    -1464938.018 
  43 :    -1464936.260 
  44 :    -1464934.847 
  45 :    -1464933.779 
  46 :    -1464932.980 
  47 :    -1464931.239 
  48 :    -1464928.862 
  49 :    -1464926.553 
  50 :    -1464924.310 
  51 :    -1464922.131 
  52 :    -1464920.015 
  53 :    -1464917.962 
  54 :    -1464915.972 
  55 :    -1464914.050 
  56 :    -1464912.200 
  57 :    -1464910.428 
  58 :    -1464908.745 
  59 :    -1464907.164 
  60 :    -1464905.702 
  61 :    -1464904.382 
  62 :    -1464903.231 
  63 :    -1464902.273 
  64 :    -1464901.365 
  65 :    -1464900.729 
  66 :    -1464900.173 
  67 :    -1464898.656 
  68 :    -1464896.876 
  69 :    -1464895.141 
  70 :    -1464893.448 
  71 :    -1464891.799 
  72 :    -1464890.191 
  73 :    -1464888.625 
  74 :    -1464887.102 
  75 :    -1464885.623 
  76 :    -1464884.190 
  77 :    -1464882.808 
  78 :    -1464881.480 
  79 :    -1464880.214 
  80 :    -1464879.018 
  81 :    -1464877.902 
  82 :    -1464876.875 
  83 :    -1464875.946 
  84 :    -1464875.123 
  85 :    -1464874.410 
  86 :    -1464873.807 
  87 :    -1464873.310 
  88 :    -1464872.911 
  89 :    -1464872.600 
  90 :    -1464872.363 
  91 :    -1464872.186 
  92 :    -1464872.003 
  93 :    -1464871.295 
  94 :    -1464870.266 
  95 :    -1464869.264 
  96 :    -1464868.287 
  97 :    -1464867.334 
  98 :    -1464866.406 
  99 :    -1464865.502 
 100 :    -1464864.621 
 101 :    -1464863.763 
 102 :    -1464862.929 
 103 :    -1464862.118 
 104 :    -1464861.331 
 105 :    -1464860.567 
 106 :    -1464859.829 
 107 :    -1464859.118 
 108 :    -1464858.434 
 109 :    -1464857.780 
 110 :    -1464857.158 
 111 :    -1464856.571 
 112 :    -1464856.020 
 113 :    -1464855.509 
 114 :    -1464855.039 
 115 :    -1464854.612 
 116 :    -1464854.228 
 117 :    -1464853.889 
 118 :    -1464853.592 
 119 :    -1464853.337 
 120 :    -1464853.120 
 121 :    -1464852.940 
 122 :    -1464852.791 
 123 :    -1464852.670 
 124 :    -1464852.574 
 125 :    -1464852.497 
 126 :    -1464852.438 
 127 :    -1464852.392 
 128 :    -1464852.357 
 129 :    -1464852.330 
 130 :    -1464852.310 
 131 :    -1464852.295 
 132 :    -1464852.284 
 133 :    -1464852.276 
plot_loadings(drift_res$EL, pops)

Version Author Date
8b7a8bc jhmarcus 2019-12-20
7b7b6d4 jhmarcus 2019-12-19

This keeps the same representation but with a larger elbo.

print(drift_res$elbo)
[1] -1464852
print(flash_backfit_res$elbo)
[1] -1465622

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Mojave 10.14.2

Matrix products: default
BLAS/LAPACK: /Users/jhmarcus/miniconda3/envs/flash_e/lib/R/lib/libRblas.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ebnm_0.1-24       ashr_2.2-38       drift.alpha_0.0.1 flashier_0.2.4   
[5] tidyr_0.8.3       dplyr_0.8.0.1     ggplot2_3.1.1    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2        compiler_3.6.1    pillar_1.3.1     
 [4] git2r_0.26.1      plyr_1.8.4        workflowr_1.4.0  
 [7] iterators_1.0.12  tools_3.6.1       digest_0.6.18    
[10] lattice_0.20-38   evaluate_0.13     tibble_2.1.1     
[13] gtable_0.3.0      pkgconfig_2.0.2   rlang_0.4.0      
[16] foreach_1.4.7     Matrix_1.2-17     parallel_3.6.1   
[19] yaml_2.2.0        xfun_0.6          withr_2.1.2      
[22] stringr_1.4.0     knitr_1.22        fs_1.2.7         
[25] rprojroot_1.3-2   grid_3.6.1        tidyselect_0.2.5 
[28] glue_1.3.1        R6_2.4.0          rmarkdown_1.12   
[31] mixsqp_0.2-4      purrr_0.3.2       magrittr_1.5     
[34] whisker_0.3-2     MASS_7.3-51.4     codetools_0.2-16 
[37] backports_1.1.4   scales_1.0.0      htmltools_0.3.6  
[40] assertthat_0.2.1  colorspace_1.4-1  labeling_0.3     
[43] stringi_1.4.3     pscl_1.5.2        doParallel_1.0.15
[46] lazyeval_0.2.2    munsell_0.5.0     truncnorm_1.0-8  
[49] SQUAREM_2017.10-1 crayon_1.3.4